Modelling of Positive Energy Districts -Rapid assessment tools to evaluate PEDs Potentials-

PEDs, Essentielle Komponenten für "Net Zero" City Workshop, IEA Annex 83, Vienna, 02.02.2023

Ali Hainoun Senior Scientist Digital Resilient Cities **Center for Energy AIT Austrian Institute of Technology GmbH**

Urban Energy Systems Analysis

Urban energy systems are key driver of the clean energy transition

Aim: to support city decision making in developing sustainable clean energy transition strategies for climate neutral cities

Key drivers

- Energy efficiency improvement
- Fuel Switching: clean fuels (BG, H2,..)
- Electrification of end use
- Promoting local/regional renewables
- Decarbonisation of heat and power sectors
- **Others:** Digitalization, flexibilization, sector coupling

Target groups: cities, energy utilities, real states developers , industry

Urban Energy Demand-Supply Analysis

EE and RE Assessment, DSM& Smart Solutions

Positive Energy Districts

Urban Energy-Water-

Food Nexus

Energy Infrastructure optimization

KPIs-based monitoring & evaluation concept

Sustainable Urban Energy

Strategies Formulation

Decarbonization and

Mitigation Scenarios

MOTIVATION

Why PEDs are important for climate neutral cities?

- Cities are responsible for 75% of global energy consumption and 80% of GHG emission,
- Cities are recognised as a high enabler of sustainable development within SDGs (G7, G11, G12, G13) \rightarrow G11: make cities and human settlements inclusive, sustainable and resilient)
- Building sector –being main energy consumer and CO2 emitter- is the driver of the sought urban energy system transformation, given its high potential for energy efficiency improvement and local RE integration.

PEDs promise to be the enabler of the conceived future visions of Climate Neutral Cities

- committed to a sustainable low-carbon transformation path;
- driven by efficient solutions for buildings and mobility;
- keen to ensure high liveability and affordability of urban services for all residents.

Numerous international, European and Austrian initiatives are working to develop solutions, plans and roadmap for deploying PEDs.

MOTIVATION

concepts, definition and activities on PEDs

- PEDs represent an innovative urban energy concept to support the desired energy system transformation at district scale.
- PEDs-concept exceeds the state of the art of PEBs and strives to integrate different building types to harness their existing synergies.
- PEDs require the highest level of energy saving, full dependency on local RE energy supply and flexible interaction with regional energy system.
- PEDs still need to overcome a multitude of interdisciplinary challenges covering technological, financial, regulatory and societal aspects.

FLEXIBLE APPROACH FOR SCREENING THE POTENTIAL OF PEDS IN URBAN AREAS

- 1. Identification of relevant urban typologies
- Data collection as input for the MAPED tool using GIS-based tools to extract area boundaries, population, built-up area, building footprints etc.
- 3. Assessment with MAPED Tool
- 4. Analyses of different supply options and related conditions/challenges for implementation

- Detached housing 1961-1980 (EFH Dicht), (91% SFH, 9% TH/MFH)
- Detached housing constructed from 2006 (EFH Neubau) (100% SFH)
- Medium dense area 1961 and 1980 (Wirtschaftswunder) (63% SFH, 5% TH, 32% MFH)
- Dense inner-city area (Gründerzeit), built before 1919 (almost 100% MFH)

MAPED (Model for Analysis of Positive Energy Districts)

Main Input Data:

- **Demographic, social data**: population, dw size, and type.
- Climate data: (HDD) and (CDD)
- **Technological data**: U-values of building envelope, efficiency& penetration rates of FE by end-use
- **Current Specific energy consumption data**: for all end-use (SH, WH, Cooking, lighting, appl.
- Potential of local renewables: PV + ST on roof top area; PV on facades, open land area, transport infrastructure area in the district, monthly solar irradiation.

Main Drivers of Transformation to PED

- Energy efficiency improvement for all end-uses
- Effective building refurbishment following building standard OIB RL6
- Electrification and decarbonisation
- Shifting space heating to HP + ST
- Increasing the DW share for space cooling
- Assumed interaction with regional electric grid.
- No change in population, Dw size, HDD and CDD

Following the End-use Approach

Link to Publication: 10.3390/en14154449

	EFH_1960er		Gründerzeit		Mischnutzung hoch		EFH Neubau	
Main construction period	1961 - 1980		before 1919		before 1919		2006 - 2010	
Total Area (m²)	62.500		62.500		62.500		62.500	
Gross floor area (m ²)	23.761		133.667		260.472		19.396	
Residential area (%)	99%		99%		32%		100%	
Service Area (%)	1%		1%		68%		0%	
Built-up Area (%, m²)	27%	17.167	50%	31.516	65%	40.435	17%	10.423
Trafic Area (%, m²)	17%	10.329	30%	18.716	29%	17.838	16%	10.209
Green Area (%, m²)	56%	35.004	0%	0	0%	0	9%	5.446
Water-bodies Area (%, m²)	0%	0	0%	0	0%	0	0%	0
Population (Personen)	312		2.512		441		376	
Residential Units	154		1.429		252		143	
Apartment type-1 (Geb. 1 Whg)	91%		0%		4%		99%	
Apartment type-2 (Geb 2 Whg)	2%		1%		9%		1%	
Apartment type-3 (Geb 3 + mehr Whg)	7%		99%		83%		0%	
Sevice Sector Floor Area (m ²)	0		0		148.324		0	
Share of floor area of Offices	0%		0%		43%		0%	
Share of floor area of Commerical/ Shopping	0%		0%		29%		0%	
Share of floor area of Hotels & Resturants	0%		0%		12%		0%	

SELECTED RESULTS

Detached housing 1961-1980 (EFH Dicht), (91% SFH, 9% TH/MFH)

Final energy by end-use for the PED State __detached housing district. FE: 8,640 kWh/Dw, 60.7 kWh/m² The detached housing district has the potential to become a PED of the 2nd kind with an annual positive energy balance of 109% for PV-electricity supply and 102.5% for ST-heat supply.

Up to 30% of intracity Emobility can be covered.

SELECTED RESULTS

SELECTED RESULTS

	Detached housing 1960ies (EFH Dicht)		Dense inner-city before 1919 (Gründerzeit)		Medium dense 1960ies (Wirtschaftswunder)		Detached housing after 2006 (EFH Neubau)	
KPIs	current	PED	current	PED	current	PED	current	PED
FE/m ²	179.4	60.7	183.0	73.4	199.6	76.6	130.9	55.5
UE/m ²	165.0	102.4	168.8	106.8	166.4	104.3	121.4	90.7
FE/Dw	25,552.3	8,640.4	11,912.4	4,778.7	23,704.2	9,095.8	19,504.0	8,271.4
UE/Dw	23,497.8	14,582.6	10,990.3	6,953.1	19,757.8	12,382.7	18,087.7	13,513.7
SH-UE/m ²	128.8	70.1	112.4	57.6	125.5	68.0	85.7	58.8
SH-FE/m ²	143.4	30.6	125.2	25.1	151.0	35.5	95.5	25.7
EL share in FE	20.4%	72.3%	24.6%	67.6%	22.2%	70.8%	23.9%	71.5%
SH share in FE	80.0%	50.4%	68.4%	34.2%	75.7%	46.3%	72.9%	46.2%
SR _{PV}	5.2%	109.7%	2.0%	45.0%	3.0%	61.6%	4.5%	89.6%
SR _{st}	18.8%	102.5%	12.2%	60.6%	16.7%	91.3%	20.4%	97.0%

FE: final energy, UE: useful energy, Dw: dwelling, SH: space heating, EI: electricity, SR: supply ratio, calculated on annual basis to cover electricity demand by local PV and part of heat demand (SH and WH) by local solar thermal (ST).

Driving urban innovation with YOU

